| Enrollment No: Exam Seat No:                                     |                                                               |                                 |      |  |
|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|------|--|
| C.U.S                                                            | SHAH UNIVE                                                    | ERSITY                          |      |  |
|                                                                  | nter Examinatio                                               |                                 |      |  |
| Subject Name: Data and File                                      | Structure                                                     |                                 |      |  |
| Subject Code: 4TE03DFS1 Semester: 3 Date: 10/12/20 Instructions: | 015 Time: 2:30 to 05:30                                       | Branch: B.Tech(CE,IT) Marks: 70 |      |  |
| (2) Instructions written on                                      | main answer book are strictly d figures (if necessary) at rig | ·                               |      |  |
| Attempt the following qu                                         | estions:                                                      |                                 | (14) |  |
| a) Define: Data structure                                        |                                                               |                                 | ()   |  |
| <b>b</b> ) Define: time complexity a                             | nd space complexity                                           |                                 |      |  |
| c) Define: successor and pred                                    |                                                               |                                 |      |  |
| <b>d</b> ) Define: directed graph and                            |                                                               |                                 |      |  |
| e) Define: hash table and has                                    |                                                               |                                 |      |  |
| f) Difference between iterati                                    |                                                               |                                 |      |  |
| 8/                                                               | and non-linear data structure                                 |                                 |      |  |
|                                                                  | tive and non-primitive data st<br>memory allocation and dyna  |                                 |      |  |
|                                                                  | ntial access file and random                                  |                                 |      |  |
|                                                                  | rix dynamically, the followin                                 |                                 |      |  |
| (A) Trees                                                        | (B) Gra                                                       |                                 |      |  |
| (C) Priority Queues                                              |                                                               | ked List                        |      |  |
| I) The balance factor for an A                                   |                                                               |                                 |      |  |
| (A) $0.1 \text{ or } -1$                                         | (B) -2,                                                       | -1 or 0                         |      |  |
| (C) 0,1 or 2                                                     |                                                               | the above                       |      |  |
| m) Graphs are represented us                                     | ing                                                           |                                 |      |  |
| (A) Adjacency tree                                               | (B) Adj                                                       | acency linked list              |      |  |
| (C) Adjacency graph                                              | (D) Adi                                                       | acency queue                    |      |  |

The data structure needed to convert a recursion to an iterative procedure is

n)

(A) Queue. (B) Graph. (C) Stack. (D) Tree.

## Attempt any four questions from Q-2 to Q-8

## Q-2 **Attempt all questions**

Q-1

What is recursion? Write a C program to solve Tower of Hanoi problem using recursion. **(5)** a)

Write an algorithm for merge sort. b) **(5)** 

Explain binary search algorithm with suitable example. c) **(4)** 



| <b>Ų-</b> 3 |            | Attempt an questions                                                                                                         |               |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------|---------------|
|             | a)         | Write an algorithm to insert an element into and delete from Circular Queue                                                  | <b>(5)</b>    |
|             | <b>b</b> ) | Do Evaluation of following expression using stack.                                                                           | <b>(5)</b>    |
|             |            | $((A/(B^{C}))+(D^{E}))-(A^{C})$                                                                                              |               |
|             |            | Where A=27, B=3, C=2, D=3, E=17.                                                                                             |               |
|             | c)         | What do you mean by priority queue? Explain it with suitable example.                                                        | <b>(4)</b>    |
| Q-4         | ,          | Attempt all questions                                                                                                        | ` /           |
| •           | a)         | Write the following algorithms for a Singly linked list.                                                                     | <b>(5)</b>    |
|             | ω)         | i) Insert an element at last position                                                                                        | (0)           |
|             |            | ii) Delete a specified element                                                                                               |               |
|             | <b>b</b> ) | Translate the following string into polish notation and trace the content of stack:                                          | <b>(5)</b>    |
|             | D)         | A * $(B + C * D) + E$                                                                                                        | (3)           |
|             | <b>c</b> ) | Explain Deque and its variations with example.                                                                               | <b>(4)</b>    |
| Q-5         | -)         | Attempt all questions                                                                                                        | (-)           |
| Q U         | a)         | What is Stack? Write algorithms for performing PUSH, POP, PEEP and CHANGE                                                    | <b>(5)</b>    |
|             | ω)         | operations on a stack.                                                                                                       | (0)           |
|             | <b>b</b> ) | Define B-Tree. Construct B-tree of order 5 for following data.                                                               | <b>(5)</b>    |
|             | D)         | 1, 7, 6, 2, 11, 4, 8, 13, 10, 5, 19, 9, 18, 24, 3, 12, 14, 20, 21, 16                                                        | (5)           |
|             | c)         | Convert following Infix expression into Postfix and Prefix expression.                                                       | <b>(4)</b>    |
|             | C)         | i. $((A * B) + (C/D))$ ii. $((A * (B + C))/D)$                                                                               | (4)           |
| Q-6         |            | Attempt all questions                                                                                                        |               |
| Q-U         | a)         | Explain Threaded Binary Tree with suitable example.                                                                          | (5)           |
|             | <b>b</b> ) | Define AVL Tree. Construct AVL tree for following data                                                                       | <b>(5)</b>    |
|             | D)         | Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec.                                                                | (3)           |
|             | <b>a</b> ) | Write a note on: Collision Resolution Techniques.                                                                            | <b>(4)</b>    |
| Q-7         | c)         | Attempt all questions                                                                                                        | (4)           |
| Q-/         | ٥)         | What do you mean by Shortest Path? Find out shortest path for given Figure 1 using                                           | <i>(5</i> )   |
|             | a)         |                                                                                                                              | <b>(5)</b>    |
|             | <b>b</b> ) | Dijkstra's Algorithm. Consider source vertex is: b                                                                           | <b>(5</b> )   |
|             | <b>b</b> ) | Define sparse matrix. Briefly explain representation of sparse matrix with the help of link list and 3-Column form.          | <b>(5)</b>    |
|             | a)         |                                                                                                                              | (4)           |
|             | c)         | Define Binary Search Tree. Create the BST for the following data.                                                            | <b>(4)</b>    |
| $\sim$ 0    |            | 40, 65, 25, 55, 10,70,30,50,15,80,75                                                                                         |               |
| Q-8         | ۵)         | Attempt all questions  What do you many by MST? Find out MST for Figure 2 vains Prim's algorithm                             | <b>(5</b> )   |
|             | a)         | What do you mean by MST? Find out MST for Figure 2 using Prim's algorithm.                                                   | <b>(5)</b>    |
|             | <b>b</b> ) | Explain Graph Traversal Techniques.                                                                                          | <b>(5)</b>    |
|             | c)         | What is Augmented Data Structure? Explain its applications.                                                                  | <b>(4)</b>    |
|             |            |                                                                                                                              |               |
|             |            | $\begin{pmatrix} a \end{pmatrix} \qquad \begin{pmatrix} 10 \\ d \end{pmatrix} \qquad \begin{pmatrix} 12 \\ 12 \end{pmatrix}$ |               |
|             |            |                                                                                                                              | _             |
|             |            | 5 C 2 d                                                                                                                      | $\rightarrow$ |
|             | ( b        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        | ( f           |
|             |            |                                                                                                                              |               |
|             |            | 4 5                                                                                                                          |               |
|             |            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         |               |
|             |            |                                                                                                                              |               |

Page 2 || 2

Figure: 1

Figure: 2

